skip to main content


Search for: All records

Creators/Authors contains: "Dmuchowski, Christopher M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electric-field-assisted atomic force microscope (E-AFM) nanolithography is a novel polymer-patterning technique that has diverse applications. E-AFM uses a biased AFM tip with conductive coatings to make patterns with little probe-sample interaction, which thereby avoids the tip wear that is a major issue for contact-mode AFM-based lithography, which usually requires a high probe-sample contact force to fabricate nanopatterns; however, the relatively large tip radius and large tip-sample separation limit its capacity to fabricate high-resolution nanopatterns. In this paper, we developed a contact mode E-AFM nanolithography approach to achieve high-resolution nanolithography of poly (methyl methacrylate) (PMMA) using a conductive AFM probe with a low stiffness (~0.16 N/m). The nanolithography process generates features by biasing the AFM probe across a thin polymer film on a metal substrate. A small constant force (0.5-1 nN) applied on the AFM tip helps engage the tip-film contact, which enhances nanomachining resolution. This E-AFM nanolithography approach enables high-resolution nanopatterning with feature width down to ~16 nm, which is less than one half of the nominal tip radius of the employed conductive AFM probes. 
    more » « less
  2. null (Ed.)